کارآیی فرایند اکسیداسیون پیشرفته H2O2/MgO در حذف مترونیدازول از محلول‌های آبی

##plugins.themes.bootstrap3.article.main##

سمیه رهدار شهین احمدی اعظم کریم زهره هاشمی مسعود علیصوفی

چکیده

مقدمه: داروها، در درمان بیماری‌های انسانی و دام‌پزشکی اهمیت ویژه‌ای دارند و ورود انواع مختلف آنتی‌بیوتیک‌ها به فاضلاب و همچنین پساب، به عنوان مهم‌ترین منابع ورود آنتی‌بیوتیک به محیط زیست شناخته شده‌اند. هدف از این مطالعه، بررسی اثربخشی پارامترهای مختلف بر حذف مترونیدازول توسط فرایند اکسیداسیون پیشرفته (H2O2/MgO) از محیط‌های آبی بود.


شیوه‌ی مطالعه: این مطالعه‌ی تجربی، در سیستم بسته انجام گرفت و تأثیر پارامترهایی مثل pH (11، 9، 7، 5، 3)، نسبت مولی H2O2/MgO (5 ،3، 1/5، 1)، غلظت اولیه‌ی مترونیدازول mg/L (80،60، 40، 20) و زمان واکنش (100، 80، 60، 40، 20) دقیقه بر روی راندمان حذف مترونیدازول توسط فرایند اکسیداسیون پیشرفته، مورد بررسی قرار گرفتند.


یافته‌ها: نتایج حاصل از این مطالعه نشان داد که فرایند اکسیداسیون پیشرفته (H2O2/MgO) قادر به حذف 84/98 درصد مترونیدازول از محیط‌های آبی در pH بهینه برابر با 3، زمان واکنش 40 دقیقه، غلظت مترونیدازول 20 میلی‌گرم بر لیتر و نسبت مولی H2O2/MgO معادل 3 می‌باشد و حذف مترونیدازول از سنتیک درجه‌ی اول (0/958 = R2) پیروی می‌کند.


نتیجه‌گیری: نتایج نشان داد که استفاده از فرایندهای تصفیه‌ی پیشرفته به صورت تلفیقی (نانو ذرات اکسید منیزیم در حضور پراکسید هیدروژن) می‌تواند کارآیی مؤثری در حذف مترونیدازول از محلول‌های آبی داشته باشد و بازده حذف توسط اين روش با pH، غلظت مترونیدازول رابطه‌ی معکوس و با زمان تماس و نسبت مولی رابطه‌ی مستقيم دارد.


کلمات کلیدی: فرایند اکسیداسیون پیشرفته، مترونیدازول، پراکسیدهیدروژن، نانوذرات اکسید منیزیم

##plugins.themes.bootstrap3.article.details##

نوع مقاله
مقاله پژوهشی

مراجع

1. Rahdar S, Igwegbe CA, Rahdar A, Ahmadi S. Efficiency of sono-nano-catalytic process of magnesium oxide nano particle in removal of penicillin G from aqueous solution. Desalination and Water Treatment 2018; 1(106): 330-5.
2. Rahdar S, Rahdar A, Igwegbe CA, Moghaddam F, Ahmadi S. Synthesis and physical characterization of nickel oxide nanoparticles and its application study in the removal of ciprofloxacin from contaminated water by adsorption: Equilibrium and kinetic studies. Desalination and Water Treatment 2019; 141: 386-93.
3. Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD. A diverse intrinsic antibiotic resistome from a cave bacterium. Nature communications 2016; 7: 13803.
4. Grenni P, Ancona V, Caracciolo AB. Ecological effects of antibiotics on natural ecosystems: a review. Microchemical Journal 2018; 136: 25-39.
5. Elsaim MH, Abde lraheem MA, Mohammed Hussein R, Elsaim MH. Removal of ciprofloxacin hydrochloride from aqueous solution by pomegranate peel grown in Alziedab agricultural scheme-River Nile State, Sudan. Biochemistry 2017; 5(5): 89-96.
6. Kümmerer K. Antibiotics in the aquatic environment--a review--part I. Chemosphere 2009; 75(4): 417-34.
7. Fang Z, Chen J, Oiu X, Qiu X, Cheng W, Zhu L. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 2011; 268(1-3): 60-7.
8. Shemer H, Kunukcu YK, Linden KG. Degradation of the pharmaceutical metronidazole via UV, Fenton and photo- Fenton processes. Chemosphere 2006; 63(2): 269-76.
9. Hamzehzadeh A, Fazlzadeh M, Rahmani K. Efficiency of nano/persulfate process (nzvi/ps) in removing metronidazole from aqueous solution. Journal of Environmental Health Enginering 2017; 4(4): 307-20. [In Persian].
10. Lien LT, Hoa NQ, Chuc NT, Thoa NT, Phuc HD, Diwan V, et al. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-a one year study from Vietnam. Int J Environ Res Public Health 2016; 13(6): pii: E588.
11. Kermani M, Bahrami Asl F, Farzadkia M, Esrafili A, Salahshur Arian S, Arfaeinia H, et al. Degradation efficiency and kinetic study of metronidazole by catalytic ozonation process in presence of MgO nanoparticles. J Urmia Univ Med Sci 2013; 24(10): 839-50. [In Persian].
12. Tyagi VK, Lo SL. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Reviews in Environmental Science and Bio/Technology 2011; 10: 215.
13. Daneshvar N, Khataee A. Removal of azo dye CI acid red 14 from contaminated water using Fenton, UV/H2O2, UV/H2O2/Fe (II), UV/H2O2/Fe (III) and UV/H2O2/Fe (III)/oxalate processes: a comparative study. Journal of Environmental Science and Health Part A 2006; 41(3): 315-28.
14. Azari A, Salari M, Dehghani MH, Alimohammadi M, Ghaffari H, Sharafi K, et al. Efficiency of magnitized graphene oxide nanoparticles in removal of 2, 4-dichlorophenol from aqueous solution. J Mazandaran Univ Med Sci 2017; 26(144): 265-81. [In Persian].
15. Saputra E, Muhammad S, Sun H, Ang H-M, Tadé MO, Wang S. A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. Journal of Colloid and Interface Science 2013; 407: 467-73.
16. Sun SP, Zeng X, Lemley AT. Nano-magnetite catalyzed heterogeneous Fenton-like degradation of emerging contaminants carbamazepine and ibuprofen in aqueous suspensions and montmorillonite clay slurries at neutral pH. Journal of Molecular Catalysis A: Chemical 2013; 371: 94-103.
17. Mahvi A, Maleki A, Rezaee R, Safari M. Reduction of humic substances in water by application of ultrasound waves and ultraviolet irradiation. Iran J Environ Health Sci Eng 2009; 6(4): 233-40.
18. Shayeghi M, Dehghani MH, Mahvi AH, Azam K. Application of acoustical processor reactors for degradation of diazinon from surface water. Journal of Arthropod-Borne Diseases 2010; 4(2): 11.
19. Kidak R, Ince NH. Catalysis of advanced oxidation reactions by ultrasound: A case study with phenol. J Hazard Mater 2007; 146(3): 630-5.
20. Shirzad Siboni M, Samadi MT, Rahmani AR, Khataee AR, Bordbar M, Samarghandi MR. Photocatalytic removal of hexavalet chromium and divalent nickel fromaqueous solution by UV irradiation in the presence of titanium dioxide vanoparticles. Iranian Journal of Health and Environment 2010; 3(3): 261-70. [In Persian].
21. Mohammadi AS, Asgari G, Ebrahimi A, Attar HM, Sharifi Z. Application of several advanced oxidation processes for degradation of 4-chlorophenol from aqueous solution. Int J Env Health Eng 2013; 2(1): 38.
22. Amin H, Amer A, El Fecky A, Ibrahim I. Treatment of textile waste water using H2O2/UV system. Physicochemical Problems of Mineral Processing 2008; 42: 17-28.
23. Abouzlam M, Ouvrard R, Mehdi D, Pontlevoy F, Gombert B, Vel Leitner NK, et al. An optimal control of a wastewater treatment reactor by catalytic ozonation. Control Engineering Practice 2013; 21(1): 105-12.
24. Noroozi Cholcheh M, Fadaei A, Mohammadi-Moghadam F, Goshtasb Mardani G. Efficiency of advanced H2O2/ZnO oxidation process in ceftriaxone antibiotic removal from aqueous solutions. Journal of Water and Wastewater 2016; 28(5): 39-47. [In Persian].
25. Dehghani S, Jonidi Jafari A, Farzadkia M, Gholami M. Investigation of the efficiency of Fenton’s advanced oxidation process in sulfadiazine antibiotic removal from aqueous solutions. J Arak Univ Med Sci 2012; 15(7): 19-29. [In Persian].
26. Ghodke S, Sonawane S, Gaikawad R, Mohite KC. TIO2/Nanoclay nanocomposite for phenol degradation in sonophotocatalytic reactor. The Canadian Journal of Chemical Engineering 2012; 90(5): 1153-9.
27. Pang YL, Abdullah AZ, Bhatia S. Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination 2011; 277(1-3): 1-14.
28. Li XQ, Elliott DW, Zhang WX. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences 2006; 31(4): 111-22.
29. Naveed S, Qamar F. Simple UV spectrophotometric assay of Metronidazole. Open Access Library Journal 2014; 1(06): 1.
30. Rahdar S, Ahmadi S. The removal of amoxicillin with Zno nanoparticles in combination with US-H2O2 advanced oxidation processes from aqueous solutions. Iran J Health Sci 2019; 7(1): 36-45.
31. Dehghani Fard E, Jonidi Jafari A, Rezae Kalantari R, Gholami M, Esrafili A. Photocatalytic Removal of Aniline from Synthetic Wastewater using ZnO Nanoparticle under Ultraviolet Irradiation. Iranian Journal of Health and Environment. 2012; 5(2): 167-78. [In Persian].
32. Venkatesha TG, Nayaka YA, Chethana BK. Adsorption of Ponceau S from aqueous solution by MgO nanoparticles. Applied Surface Science 2013; 276: 620-7.
33. Kamani H, Bazrafshan E, Ashrafi SD, Sancholi F. Efficiency of Sono-nano-catalytic Process of Tio2 Nano-particle in Removal of Erythromycin and Metronidazole from Aqueous Solution. J Mazandaran Univ Med Sci 2017; 27(151): 140-54. [In Persian].
34. Guyer GT, Ince NH. Degradation of diclofenac in water by homogeneous and heterogeneous sonolysis. Ultrason Sonochem 2009; 18(1): 11-9.
35. Elmolla E, Chaudhuri M. Phtocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 2010; 252(1-3): 46-52.
36. Peratitus M, Garciamolina V, Banos MA, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Cat B: Environ 2004; 47(4): 219-56.
37. Oh BT, Seo YS, Sudhakar D, Choe JH, Lee SM, Park YJ. Oxidative degradation of endotoxin by advanced oxidation process. J Hazard Mater 2014; 279: 105-10.
38. Parastar S, Poureshg Y, Nasseri S, Vosoughi M, Golestanifar H, Hemmati S, et al. Photocatalytic removal of nitrate from aqueous solutions by ZnO/UV process. Journal of Health 2012; 3(3): 54-61. [In Persian].
39. Gol Mirzaei K. Study on the efficiency of proxone method as advanced oxidation processto remove 4-chlorophenol from aqueous solution [Thesis]. Kerman, Iran: School of Health, Kerman University of Medical Sciences; 2016. [In Persian].
40. Mirzaee A, Gharbani P. Degradation of aqueous solution of 4-Chloro-2-Nitrophenol in nano-TiO2/H2O2 system. International Journal of Nano Dimension 2014; 5(1): 77-81.
41. Modirshahla N, Behnajady MA, Jangi Oskui MR. Investigation of the efficiency of ZnO photocatalyst in the removal of p-Nitrophenol from contaminated water. Iranian Journal of Chemistry and Chemical Engineering (IJCCE). 2009; 28(1): 49-55.
42. Mahmoodi NM, Arami M, Limaee NY, Tabrizi NS. Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chemical Engineering Journal 2005; 112(1-3): 191-6.
43. Ghaly MY, Ali ME, Österlund L, Khattab IA, Badawy MI, Farah JY, et al. ZnO/spiral-shaped glass for solar photocatalytic oxidation of Reactive Red 120. Arabian Journal of Chemistry 2017; 1(10): S3501-S357.
44. Javid A, Nasseri S, Mesdaghinia AR, Mahvi AH, Alimohammadi M, Mehdinavaz Aghdam R, et al. Performance of photocatalytic oxidation of tetracycline in aqueous solution by TiO 2 nanofibers. J Environ Health Sci Eng 2013; 11: 24.
45. Li Y, Wang F, Zhou G, Ni Y. Aniline
degradation by electrocatalytic oxidation. Chemosphere 2003; 53(10): 1229-34.
46. Kermani M, Asadzadeh SN, Farzadkia M, Gholami M. Using H2O2-Based hotochemical
Oxidation (UV/ H2O2) in eliminating paraquat from aqueous solutions. Journal of North Khorasan University of Medical Sciences 2018; 10(1): 36-45.